Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A highly diastereoselective oxidant contributes to Ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora.

Identifieur interne : 000346 ( Main/Exploration ); précédent : 000345; suivant : 000347

A highly diastereoselective oxidant contributes to Ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora.

Auteurs : Daniel J. Yelle [États-Unis] ; Alexander N. Kapich [Biélorussie] ; Carl J. Houtman [États-Unis] ; Fachuang Lu [États-Unis] ; Vitaliy I. Timokhin [États-Unis] ; Raymond C. Fort [États-Unis] ; John Ralph [États-Unis] ; Kenneth E. Hammel [États-Unis]

Source :

RBID : pubmed:25261514

Descripteurs français

English descriptors

Abstract

The white rot basidiomycete Ceriporiopsis subvermispora delignifies wood selectively and has potential biotechnological applications. Its ability to remove lignin before the substrate porosity has increased enough to admit enzymes suggests that small diffusible oxidants contribute to delignification. A key question is whether these unidentified oxidants attack lignin via single-electron transfer (SET), in which case they are expected to cleave its propyl side chains between Cα and Cβ and to oxidize the threo-diastereomer of its predominating β-O-4-linked structures more extensively than the corresponding erythro-diastereomer. We used two-dimensional solution-state nuclear magnetic resonance (NMR) techniques to look for changes in partially biodegraded lignin extracted from spruce wood after white rot caused by C. subvermispora. The results showed that (i) benzoic acid residues indicative of Cα-Cβ cleavage were the major identifiable truncated structures in lignin after decay and (ii) depletion of β-O-4-linked units was markedly diastereoselective with a threo preference. The less selective delignifier Phanerochaete chrysosporium also exhibited this diastereoselectivity on spruce, and a P. chrysosporium lignin peroxidase operating in conjunction with the P. chrysosporium metabolite veratryl alcohol did likewise when cleaving synthetic lignin in vitro. However, C. subvermispora was significantly more diastereoselective than P. chrysosporium or lignin peroxidase-veratryl alcohol. Our results show that the ligninolytic oxidants of C. subvermispora are collectively more diastereoselective than currently known fungal ligninolytic oxidants and suggest that SET oxidation is one of the chemical mechanisms involved.

DOI: 10.1128/AEM.02111-14
PubMed: 25261514
PubMed Central: PMC4249248


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A highly diastereoselective oxidant contributes to Ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora.</title>
<author>
<name sortKey="Yelle, Daniel J" sort="Yelle, Daniel J" uniqKey="Yelle D" first="Daniel J" last="Yelle">Daniel J. Yelle</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kapich, Alexander N" sort="Kapich, Alexander N" uniqKey="Kapich A" first="Alexander N" last="Kapich">Alexander N. Kapich</name>
<affiliation wicri:level="1">
<nlm:affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus.</nlm:affiliation>
<country xml:lang="fr">Biélorussie</country>
<wicri:regionArea>U.S. Forest Products Laboratory, Madison, Wisconsin, USA Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA Institute of Microbiology, National Academy of Sciences of Belarus, Minsk</wicri:regionArea>
<wicri:noRegion>Minsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Houtman, Carl J" sort="Houtman, Carl J" uniqKey="Houtman C" first="Carl J" last="Houtman">Carl J. Houtman</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Fachuang" sort="Lu, Fachuang" uniqKey="Lu F" first="Fachuang" last="Lu">Fachuang Lu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Timokhin, Vitaliy I" sort="Timokhin, Vitaliy I" uniqKey="Timokhin V" first="Vitaliy I" last="Timokhin">Vitaliy I. Timokhin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fort, Raymond C" sort="Fort, Raymond C" uniqKey="Fort R" first="Raymond C" last="Fort">Raymond C. Fort</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of Maine, Orono, Maine, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Maine, Orono, Maine</wicri:regionArea>
<placeName>
<region type="state">Maine (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hammel, Kenneth E" sort="Hammel, Kenneth E" uniqKey="Hammel K" first="Kenneth E" last="Hammel">Kenneth E. Hammel</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA kehammel@wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>U.S. Forest Products Laboratory, Madison, Wisconsin, USA Department of Bacteriology, University of Wisconsin, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25261514</idno>
<idno type="pmid">25261514</idno>
<idno type="doi">10.1128/AEM.02111-14</idno>
<idno type="pmc">PMC4249248</idno>
<idno type="wicri:Area/Main/Corpus">000295</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000295</idno>
<idno type="wicri:Area/Main/Curation">000295</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000295</idno>
<idno type="wicri:Area/Main/Exploration">000295</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A highly diastereoselective oxidant contributes to Ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora.</title>
<author>
<name sortKey="Yelle, Daniel J" sort="Yelle, Daniel J" uniqKey="Yelle D" first="Daniel J" last="Yelle">Daniel J. Yelle</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kapich, Alexander N" sort="Kapich, Alexander N" uniqKey="Kapich A" first="Alexander N" last="Kapich">Alexander N. Kapich</name>
<affiliation wicri:level="1">
<nlm:affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus.</nlm:affiliation>
<country xml:lang="fr">Biélorussie</country>
<wicri:regionArea>U.S. Forest Products Laboratory, Madison, Wisconsin, USA Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA Institute of Microbiology, National Academy of Sciences of Belarus, Minsk</wicri:regionArea>
<wicri:noRegion>Minsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Houtman, Carl J" sort="Houtman, Carl J" uniqKey="Houtman C" first="Carl J" last="Houtman">Carl J. Houtman</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Fachuang" sort="Lu, Fachuang" uniqKey="Lu F" first="Fachuang" last="Lu">Fachuang Lu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Timokhin, Vitaliy I" sort="Timokhin, Vitaliy I" uniqKey="Timokhin V" first="Vitaliy I" last="Timokhin">Vitaliy I. Timokhin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fort, Raymond C" sort="Fort, Raymond C" uniqKey="Fort R" first="Raymond C" last="Fort">Raymond C. Fort</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of Maine, Orono, Maine, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Maine, Orono, Maine</wicri:regionArea>
<placeName>
<region type="state">Maine (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hammel, Kenneth E" sort="Hammel, Kenneth E" uniqKey="Hammel K" first="Kenneth E" last="Hammel">Kenneth E. Hammel</name>
<affiliation wicri:level="2">
<nlm:affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA kehammel@wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>U.S. Forest Products Laboratory, Madison, Wisconsin, USA Department of Bacteriology, University of Wisconsin, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Coriolaceae (enzymology)</term>
<term>Coriolaceae (metabolism)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Lignin (chemistry)</term>
<term>Lignin (metabolism)</term>
<term>Molecular Structure (MeSH)</term>
<term>Oxidants (chemistry)</term>
<term>Oxidants (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Peroxidases (metabolism)</term>
<term>Phanerochaete (metabolism)</term>
<term>Picea (metabolism)</term>
<term>Picea (microbiology)</term>
<term>Wood (metabolism)</term>
<term>Wood (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bois (microbiologie)</term>
<term>Bois (métabolisme)</term>
<term>Coriolaceae (enzymologie)</term>
<term>Coriolaceae (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Lignine (composition chimique)</term>
<term>Lignine (métabolisme)</term>
<term>Oxydants (composition chimique)</term>
<term>Oxydants (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxidases (métabolisme)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Picea (microbiologie)</term>
<term>Picea (métabolisme)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Structure moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lignin</term>
<term>Oxidants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Lignin</term>
<term>Oxidants</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Lignine</term>
<term>Oxydants</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Coriolaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coriolaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Coriolaceae</term>
<term>Phanerochaete</term>
<term>Picea</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bois</term>
<term>Picea</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Picea</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bois</term>
<term>Coriolaceae</term>
<term>Lignine</term>
<term>Oxydants</term>
<term>Peroxidases</term>
<term>Phanerochaete</term>
<term>Picea</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Molecular Structure</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Oxydoréduction</term>
<term>Structure moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The white rot basidiomycete Ceriporiopsis subvermispora delignifies wood selectively and has potential biotechnological applications. Its ability to remove lignin before the substrate porosity has increased enough to admit enzymes suggests that small diffusible oxidants contribute to delignification. A key question is whether these unidentified oxidants attack lignin via single-electron transfer (SET), in which case they are expected to cleave its propyl side chains between Cα and Cβ and to oxidize the threo-diastereomer of its predominating β-O-4-linked structures more extensively than the corresponding erythro-diastereomer. We used two-dimensional solution-state nuclear magnetic resonance (NMR) techniques to look for changes in partially biodegraded lignin extracted from spruce wood after white rot caused by C. subvermispora. The results showed that (i) benzoic acid residues indicative of Cα-Cβ cleavage were the major identifiable truncated structures in lignin after decay and (ii) depletion of β-O-4-linked units was markedly diastereoselective with a threo preference. The less selective delignifier Phanerochaete chrysosporium also exhibited this diastereoselectivity on spruce, and a P. chrysosporium lignin peroxidase operating in conjunction with the P. chrysosporium metabolite veratryl alcohol did likewise when cleaving synthetic lignin in vitro. However, C. subvermispora was significantly more diastereoselective than P. chrysosporium or lignin peroxidase-veratryl alcohol. Our results show that the ligninolytic oxidants of C. subvermispora are collectively more diastereoselective than currently known fungal ligninolytic oxidants and suggest that SET oxidation is one of the chemical mechanisms involved. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25261514</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>80</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A highly diastereoselective oxidant contributes to Ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora.</ArticleTitle>
<Pagination>
<MedlinePgn>7536-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.02111-14</ELocationID>
<Abstract>
<AbstractText>The white rot basidiomycete Ceriporiopsis subvermispora delignifies wood selectively and has potential biotechnological applications. Its ability to remove lignin before the substrate porosity has increased enough to admit enzymes suggests that small diffusible oxidants contribute to delignification. A key question is whether these unidentified oxidants attack lignin via single-electron transfer (SET), in which case they are expected to cleave its propyl side chains between Cα and Cβ and to oxidize the threo-diastereomer of its predominating β-O-4-linked structures more extensively than the corresponding erythro-diastereomer. We used two-dimensional solution-state nuclear magnetic resonance (NMR) techniques to look for changes in partially biodegraded lignin extracted from spruce wood after white rot caused by C. subvermispora. The results showed that (i) benzoic acid residues indicative of Cα-Cβ cleavage were the major identifiable truncated structures in lignin after decay and (ii) depletion of β-O-4-linked units was markedly diastereoselective with a threo preference. The less selective delignifier Phanerochaete chrysosporium also exhibited this diastereoselectivity on spruce, and a P. chrysosporium lignin peroxidase operating in conjunction with the P. chrysosporium metabolite veratryl alcohol did likewise when cleaving synthetic lignin in vitro. However, C. subvermispora was significantly more diastereoselective than P. chrysosporium or lignin peroxidase-veratryl alcohol. Our results show that the ligninolytic oxidants of C. subvermispora are collectively more diastereoselective than currently known fungal ligninolytic oxidants and suggest that SET oxidation is one of the chemical mechanisms involved. </AbstractText>
<CopyrightInformation>Copyright © 2014, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yelle</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kapich</LastName>
<ForeName>Alexander N</ForeName>
<Initials>AN</Initials>
<AffiliationInfo>
<Affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Houtman</LastName>
<ForeName>Carl J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Fachuang</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Timokhin</LastName>
<ForeName>Vitaliy I</ForeName>
<Initials>VI</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fort</LastName>
<ForeName>Raymond C</ForeName>
<Initials>RC</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Maine, Orono, Maine, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ralph</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hammel</LastName>
<ForeName>Kenneth E</ForeName>
<Initials>KE</Initials>
<AffiliationInfo>
<Affiliation>U.S. Forest Products Laboratory, Madison, Wisconsin, USA Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA kehammel@wisc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016877">Oxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="C042858">lignin peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055453" MajorTopicYN="N">Coriolaceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016877" MajorTopicYN="N">Oxidants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25261514</ArticleId>
<ArticleId IdType="pii">AEM.02111-14</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.02111-14</ArticleId>
<ArticleId IdType="pmc">PMC4249248</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEMS Microbiol Lett. 1999 Nov 15;180(2):205-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10556713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Feb;65(3):313-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14751302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1993 Jun;59(6):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Feb 25;5:3332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24567108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 2007 Aug;187(2):258-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2004 Jun 16;52(12):3713-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15186087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2014 Apr;80(7):2062-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24441164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Nov 14;354(3):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7957943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 May 27;259(1):212-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10334942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Jul;10(7):1844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2013 Mar;15(3):956-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23206186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jul;70(7):4073-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2009 Mar;2(2):164-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 31;281(13):8843-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16421107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Org Chem. 2010 Oct 1;75(19):6549-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20831160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 11;287(20):16903-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22437835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2014 May 6;102:28-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24631824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Nov;63(11):4435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24958869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434909</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Biélorussie</li>
<li>États-Unis</li>
</country>
<region>
<li>Maine (État)</li>
<li>Wisconsin</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Yelle, Daniel J" sort="Yelle, Daniel J" uniqKey="Yelle D" first="Daniel J" last="Yelle">Daniel J. Yelle</name>
</region>
<name sortKey="Fort, Raymond C" sort="Fort, Raymond C" uniqKey="Fort R" first="Raymond C" last="Fort">Raymond C. Fort</name>
<name sortKey="Hammel, Kenneth E" sort="Hammel, Kenneth E" uniqKey="Hammel K" first="Kenneth E" last="Hammel">Kenneth E. Hammel</name>
<name sortKey="Houtman, Carl J" sort="Houtman, Carl J" uniqKey="Houtman C" first="Carl J" last="Houtman">Carl J. Houtman</name>
<name sortKey="Lu, Fachuang" sort="Lu, Fachuang" uniqKey="Lu F" first="Fachuang" last="Lu">Fachuang Lu</name>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
<name sortKey="Timokhin, Vitaliy I" sort="Timokhin, Vitaliy I" uniqKey="Timokhin V" first="Vitaliy I" last="Timokhin">Vitaliy I. Timokhin</name>
</country>
<country name="Biélorussie">
<noRegion>
<name sortKey="Kapich, Alexander N" sort="Kapich, Alexander N" uniqKey="Kapich A" first="Alexander N" last="Kapich">Alexander N. Kapich</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000346 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000346 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25261514
   |texte=   A highly diastereoselective oxidant contributes to Ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25261514" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020